30 research outputs found

    Functional MRI with active, fully implanted, deep brain stimulation systems: Safety and experimental confounds

    Get PDF
    We investigated safety issues and potential experimental confounds when performing functional magnetic resonance imaging (fMRI) investigations in human subjects with fully implanted, active, deep brain stimulation (DBS) systems. Measurements of temperature and induced voltage were performed in an in vitro arrangement simulating bilateral DBS during magnetic resonance imaging (MRI) using head transmit coils in both 1.5 and 3.0 T MRI systems. For MRI sequences typical of an fMRI study with coil-averaged specific absorption rates (SARs) less than 0.4 W/kg, no MRI-induced temperature change greater than the measurement sensitivity (0.1 °C) was detected at 1.5 T, and at 3 T temperature elevations were less than 0.5 °C, i.e. within safe limits. For the purposes of demonstration, MRI pulse sequences with SARs of 1.45 W/kg and 2.34 W/kg (at 1.5 T and 3 T, respectively) were prescribed and elicited temperature increases (> 1 °C) greater than those considered safe for human subjects. Temperature increases were independent of the presence or absence of active stimulator pulsing. At both field strengths during echo planar MRI, the perturbations of DBS equipment performance were sufficiently slight, and temperature increases sufficiently low to suggest that thermal or electromagnetically mediated experimental confounds to fMRI with DBS are unlikely. We conclude that fMRI studies performed in subjects with subcutaneously implanted DBS units can be both safe and free from DBS-specific experimental confounds. Furthermore, fMRI in subjects with fully implanted rather than externalised DBS stimulator units may offer a significant safety advantage. Further studies are required to determine the safety of MRI with DBS for other MRI systems, transmit coil configurations and DBS arrangements

    Subthalamic nucleus deep brain stimulation induces impulsive action when patients with Parkinson's disease act under speed pressure

    Get PDF
    The subthalamic nucleus (STN) is proposed to modulate response thresholds and speed-accuracy trade-offs. In situations of conflict, the STN is considered to raise response thresholds, allowing time for the accumulation of information to occur before a response is selected. Conversely, speed pressure is thought to reduce the activity of the STN and lower response thresholds, resulting in fast, errorful responses. In Parkinson's disease (PD), subthalamic nucleus deep brain stimulation (STN-DBS) reduces the activity of the nucleus and improves motor symptoms. We predicted that the combined effects of STN stimulation and speed pressure would lower STN activity and lead to fast, errorful responses, hence resulting in impulsive action. We used the motion discrimination 'moving-dots' task to assess speed-accuracy trade-offs, under both speed and accuracy instructions. We assessed 12 patients with PD and bilateral STN-DBS and 12 age-matched healthy controls. Participants completed the task twice, and the patients completed it once with STN-DBS on and once with STN-DBS off, with order counterbalanced. We found that STN stimulation was associated with significantly faster reaction times but more errors under speed instructions. Application of the drift diffusion model showed that stimulation resulted in lower response thresholds when acting under speed pressure. These findings support the involvement of the STN in the modulation of speed-accuracy trade-offs and establish for the first time that speed pressure alone, even in the absence of conflict, can result in STN stimulation inducing impulsive action in PD

    Subthalamic nucleus deep brain stimulation in elderly patients – analysis of outcome and complications

    Get PDF
    BACKGROUND: There is an ongoing discussion about age limits for deep brain stimulation (DBS). Current indications for DBS are tremor-dominant disorders, Parkinson's disease, and dystonia. Electrode implantation for DBS with analgesia and sedation makes surgery more comfortable, especially for elderly patients. However, the value of DBS in terms of benefit-risk ratio in this patient population is still uncertain. METHODS: Bilateral electrode implantation into the subthalamic nucleus (STN) was performed in a total of 73 patients suffering from Parkinson's disease. Patients were analyzed retrospectively. For this study they were divided into two age groups: group I (age <65 years, n = 37) and group II (age ≥ 65 years, n = 36). Examinations were performed preoperatively and at 6-month follow-up intervals for 24 months postoperatively. Age, UPDRS motor score (part III) on/off, Hoehn & Yahr score, Activity of Daily Living (ADL), L-dopa medication, and complications were determined. RESULTS: Significant differences were found in overall performance determined as ADL scores (group I: 48/71 points, group II: 41/62 points [preoperatively/6-month postoperatively]) and in the rate of complications (group I: 4 transient psychosis, 4 infections in a total of 8 patients, group II: 2 deaths [unrelated to surgery], 1 intracerebral hemorrhage, 7 transient psychosis, 3 infections, 2 pneumonia in a total of 13 patients), (p < 0.05). Interestingly, changes in UPDRS scores, Hoehn & Yahr scores, and L-dopa medication were not statistically different between the two groups. CONCLUSION: DBS of the STN is clinically as effective in elderly patients as it is in younger ones. However, a more careful selection and follow-up of the elderly patients are required because elderly patients have a higher risk of surgery-related complications and a higher morbidity rate

    Loss of thalamic serotonin transporters in early drug-naïve Parkinson’s disease patients is associated with tremor: an [123I]β-CIT SPECT study

    Get PDF
    In vitro studies revealed serotonin transporter (5-HTT) decline in Parkinson’s disease (PD). Yet, few studies investigated thalamic 5-HTT in vivo and its effect on PD heterogeneity. We analyzed thalamic [123I]β-CIT binding (mainly reflecting 5-HTT binding) in 32 drug-naïve PD patients and 13 controls with SPECT. Twenty-six patients were examined twice (17 months apart). Based on UPDRS scores, we identified subgroups of patients with moderate/severe tremor (PDT) and without tremor (PDWT) at the time of clinical diagnosis. Additionally, depressive symptoms were evaluated using the Beck Depression Inventory (BDI) at baseline. Mean thalamic specific to non-specific [123I]β-CIT binding ratio was lower in patients when compared to controls, and further decreased during follow-up. At baseline, average thalamic ratio was significantly lower in the PDT than in the PDWT subgroup. No correlation was found between BDI scores and thalamic binding ratios. Our findings show decline of [123I]β-CIT binding to thalamic 5-HTT in PD and its possible contribution to tremor onset

    Surgery for movement disorders: new applications?

    No full text

    Coherence between cerebellar thalamus, cortex and muscle in man: cerebellar thalamus interactions.

    No full text
    Local field potentials (LFPs) were recorded in seven unanaesthetized patients between the four adjacent contacts of a macroelectrode stereotactically implanted for the treatment of tremor. The LFPs were presumed to arise predominantly from the nucleus ventralis intermedius (Vim) of the thalamus, the implantation target. They were recorded simultaneously with the ipsilateral EEG and contralateral EMG during an isometric contraction or at rest. The patients had a history of either isolated tremor (essential tremor, n = 2; benign tremulous Parkinson's disease, n = 1) or tremor with signs of a cerebellar syndrome (multiple sclerosis, n = 3; essential tremor and ataxia, n = 1), although clinical tremor was absent at the time of recording because of a temporary microthalamotomy effect in four patients. In patients with isolated tremor, oscillatory activity picked up by contacts in Vim (cerebellar thalamus) was invariably coherent with that in the sensorimotor cortex or contracting muscle in the 8-27 Hz range. Such coherence was absent in two of the four subjects with tremor associated with a cerebellar syndrome. Coherence between LFPs recorded from more caudally placed contacts and the sensorimotor cortex or contracting muscle was negligible in all patients. These caudally placed contacts demonstrated the highest sensory evoked potential in response to median nerve stimulation. Oscillatory activity in the cerebellar thalamus (Vim) lagged behind that in both cortex and muscle. Coherent activity between the cerebellar thalamus (Vim) and the cortex persisted at rest. It is suggested that rhythmicities in the 8-27 Hz range could provide the basis for a temporal framework that is widely distributed within the motor system

    Subthalamic nucleus, sensorimotor cortex and muscle interrelationships in Parkinson's disease.

    No full text
    Ten patients with Parkinson's disease were seen following bilateral or unilateral implantation of macroelectrodes into the subthalamic nucleus. Local field potentials (LFPs) were recorded from adjacent subthalamic nucleus macroelectrode (STNME) contacts simultaneously with EEG activity over the supplementary motor (Cz-FCz) and sensorimotor (C3/4-FC3/4) areas and EMG activity from the contralateral wrist extensors during isometric and phasic wrist movements. Significant coherence was seen between STNME LFPs and Cz-FCz, STNME LFPs and C3/4-FC3/4, and STNME LFPs and EMG over the range 7-45 Hz. EEG phase-led STNME LFPs by 24.4 ms (95% confidence interval 19.8 to 29.0 ms). EMG also led STNME LFPs, but time differences tended to cluster around one of two values: 6.3 ms (-0.7 to 13.3 ms) and 46.5 ms (26.2 to 66.8 ms). Recordings from the STNME contact that demonstrated the most consistent coherence with Cz-FCz in the 15-30 Hz band coincided with the contact which, when electrically stimulated at high frequencies, produced the most effective clinical response in eight out of nine (89%) subjects (P &lt; 0.01). Oscillatory activity at 15-30 Hz may therefore prove of use in localizing the subthalamic nucleus target that provides the best clinical effect on stimulation. These results extend the hypothesis that coherent activity may be useful in binding together related activities in simultaneously active motor centres. The presence of coherence between EEG and STNME LFPs in both the beta and the gamma band (as opposed to only the beta band between EEG and cerebellar thalamus) suggests that there may be some relative frequency selectivity in the communication between different motor structures

    Intermuscular coherence in Parkinson's disease: effects of subthalamic nucleus stimulation.

    No full text
    It remains unclear how high frequency stimulation of the subthalamic nucleus (STN) improves parkinsonism. We hypothesized that stimulation may affect the organization of the cortical drive to voluntarily activated muscle. Normally this is characterized by oscillations at 15-30 Hz, manifest in coherence between muscles in the same frequency band. We therefore investigated the effects of STN stimulation on electromyographic (EMG) activity in co-contracting distal arm muscles in nine subjects with Parkinson's disease off drugs. Without stimulation, coherence between EMG signals was diminished at 15-30 Hz compared with nine controls. STN stimulation increased coherence in the 15-30 Hz band, so that it approached that in healthy subjects. The results suggest that STN stimulation facilitates the normal cortical drive to muscles
    corecore